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 The solution of Eq. (1) for the unknown 
system, in which r  represents an assumed value 
for the exact value 

1

r1′ , is 
INTRODUCTION 

 
A novel solution method, based on the 

Schwinger variational functional, to the inverse 
transport problem of determining unknown 
interface locations in a multilayer source/shield 
system based on gamma-ray flux measurements 
was recently developed [1].  In one-dimensional 
(spherical) test problems, the Schwinger inverse 
method failed to converge when the source/ 
shield and several shield/shield interface 
locations were unknown, and in other cases it 
attempted to generate nonphysical models (e.g., 
with negative radii) [1].  In this paper, the 
convergence properties of the Schwinger inverse 
method are analyzed using analytic solutions for 
a monodirectional slab problem. 
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where gM  is the calculated leakage: 
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The leakage that would be “measured” for 

the actual system is 
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ANALYTIC TEST PROBLEM 
  
Consider a one-dimensional homogeneous 

slab ( 0 ) source of monodirectional 
gamma-rays (in the positive-r direction) of G 
discrete energies, and let there be a detector 
located to the right of the slab at location 

1rr ′<<

dr′  
such that , with a vacuum between the 
source and the detector.  Assuming that any 
scattered photons lose energy and are removed, 
the transport equation is 

drr ′<′1

where subscript o represents the solution for the 
actual system. 

The solution of Eq. (2) is 
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APPLICATION OF THE SCHWINGER 
METHOD 
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The Schwinger inverse method [1] was 
derived from a perturbation-theory approach to 
the inverse transport problem.  Instead of 
calculating the effect of a system perturbation on 
a quantity of interest (the usual use of the 
Schwinger functional), the quantity of interest 
was assumed to be given (from a measurement) 
and the Schwinger functional was manipulated to 
produce an equation for the system perturbation.  
The equation is applied iteratively. 

 
where the notation is standard and the source 

 has dimensions of γ/s/cm3.  The adjoint 
equation corresponding to Eq. (1) is 
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  (2) Specializing to the simplified case of this 

paper, the basic equation for the Schwinger 
inverse method of finding an unknown source 
interface [1] becomes 

 
Suppose the location of the “outer” 

boundary of the source, , is unknown and to 
be determined.   

1r ′  



The quantity  is, in the 
monodirectional problem, 
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(7) 

 
where  is the update, calculated in the present 
iteration, to the present estimate  and, in the 

monodirectional problem,  

and .  The derivatives 
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 appear because 

of a first-order Taylor expansion of  and 

, respectively, in the derivation of Eq. (7) 
[1]. 
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The derivative is 
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In the Schwinger inverse method for this 

problem,   Using this fact and Eq. (6), 
the integral outside the brackets in Eq. (7) is 

.1* =gS
Note that the first-order Taylor expansion 

that leads to the inclusion of 
1

)(
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 in Eq. (7) is a perfectly good 

approximation for  [Eq. (9)] and  
[Eq. (11)] on the right side of the interface 
( ), but a potentially poor approximation for 
the left side of the interface ( ), depending 
on the magnitude of .  This observation helps 
explain the method’s failure to converge [1] in 
certain problems when the source radius was 
unknown, and suggests that inclusion of more 
terms in the Taylor series might be useful, 
although the resulting equation, unlike Eq. (7), 
would be nonlinear in 
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a well-known result obtainable from the 
definition of the adjoint transport operator [1]. 

The quantity  is, in the 
monodirectional problem, 
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Specializing to the case of a single energy 

group ( 1=G ) and using Eqs. (8), (10), and (12), 
Eq. (7) becomes 
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Using Eqs. (4) and (5) and a bit of algebra, 
Eq. (13) becomes (9) 

  
The derivative is 
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where 11,1 rrr ex −′≡∆  is the difference between 
the exact interface location and the current model 
estimate. 
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Fig. 1. Convergence of the Schwinger inverse method for a homogeneous source with 
one unknown boundary [plots of Eq. (14)].  
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ANALYTIC RESULTS 
 
The convergence of the Schwinger method 

for the monodirectional one-region source 
problem with an unknown right-hand boundary 
location is shown in Fig. 1 for various values of 

.  It is evident that, for this problem, the 
method will always converge, regardless of the 
starting value of  or the accuracy of the first-
order Taylor expansion for the integrals.   

1
tΣ

1r

On the other hand, when Σ  is large, the 
method may have difficulty converging, and it 
may even be forced into nonphysical models 
before convergence.  For example, if 

 cm–1 and the exact location is 
 cm and the initial guess is  cm, 

implying  cm, then Eq. (14) yields 
 cm and the value for the next 

iteration is 
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11 11101 =∆+= r rr  cm, which is 
probably a nonphysical value if the expected 
value is close to 9.5 cm.  Because Eq. (14) is 
unconstrained by the need for a physical model, 

however, this problem actually converges, 
creeping along the asymptote  cm for 
22 000 iterations. 
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CONCLUSIONS 

 
Analytic solutions to a simple problem have 

revealed reasons for convergence trouble in the 
Schwinger inverse method [1].  Multilayer slab 
problems with multiple unknown interface 
locations (both source and shield) will be 
presented in the talk. 
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